Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel Protection: Random Coding Meets Sparse Channels (0908.4265v2)

Published 28 Aug 2009 in cs.IT, math.IT, and math.OC

Abstract: Multipath interference is an ubiquitous phenomenon in modern communication systems. The conventional way to compensate for this effect is to equalize the channel by estimating its impulse response by transmitting a set of training symbols. The primary drawback to this type of approach is that it can be unreliable if the channel is changing rapidly. In this paper, we show that randomly encoding the signal can protect it against channel uncertainty when the channel is sparse. Before transmission, the signal is mapped into a slightly longer codeword using a random matrix. From the received signal, we are able to simultaneously estimate the channel and recover the transmitted signal. We discuss two schemes for the recovery. Both of them exploit the sparsity of the underlying channel. We show that if the channel impulse response is sufficiently sparse, the transmitted signal can be recovered reliably.

Citations (13)

Summary

We haven't generated a summary for this paper yet.