Papers
Topics
Authors
Recent
2000 character limit reached

Planar Drawings of Higher-Genus Graphs

Published 12 Aug 2009 in cs.CG and cs.DM | (0908.1608v1)

Abstract: In this paper, we give polynomial-time algorithms that can take a graph G with a given combinatorial embedding on an orientable surface S of genus g and produce a planar drawing of G in R2, with a bounding face defined by a polygonal schema P for S. Our drawings are planar, but they allow for multiple copies of vertices and edges on P's boundary, which is a common way of visualizing higher-genus graphs in the plane. Our drawings can be defined with respect to either a canonical polygonal schema or a polygonal cutset schema, which provides an interesting tradeoff, since canonical schemas have fewer sides, and have a nice topological structure, but they can have many more repeated vertices and edges than general polygonal cutsets. As a side note, we show that it is NP-complete to determine whether a given graph embedded in a genus-g surface has a set of 2g fundamental cycles with vertex-disjoint interiors, which would be desirable from a graph-drawing perspective.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.