On the Hybrid Extension of CTL and CTL+ (0906.2541v1)
Abstract: The paper studies the expressivity, relative succinctness and complexity of satisfiability for hybrid extensions of the branching-time logics CTL and CTL+ by variables. Previous complexity results show that only fragments with one variable do have elementary complexity. It is shown that H1CTL+ and H1CTL, the hybrid extensions with one variable of CTL+ and CTL, respectively, are expressively equivalent but H1CTL+ is exponentially more succinct than H1CTL. On the other hand, HCTL+, the hybrid extension of CTL with arbitrarily many variables does not capture CTL*, as it even cannot express the simple CTL* property EGFp. The satisfiability problem for H1CTL+ is complete for triply exponential time, this remains true for quite weak fragments and quite strong extensions of the logic.