Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on uniform power connectivity in the SINR model (0906.2311v2)

Published 12 Jun 2009 in cs.DM and cs.PF

Abstract: In this paper we study the connectivity problem for wireless networks under the Signal to Interference plus Noise Ratio (SINR) model. Given a set of radio transmitters distributed in some area, we seek to build a directed strongly connected communication graph, and compute an edge coloring of this graph such that the transmitter-receiver pairs in each color class can communicate simultaneously. Depending on the interference model, more or less colors, corresponding to the number of frequencies or time slots, are necessary. We consider the SINR model that compares the received power of a signal at a receiver to the sum of the strength of other signals plus ambient noise . The strength of a signal is assumed to fade polynomially with the distance from the sender, depending on the so-called path-loss exponent $\alpha$. We show that, when all transmitters use the same power, the number of colors needed is constant in one-dimensional grids if $\alpha>1$ as well as in two-dimensional grids if $\alpha>2$. For smaller path-loss exponents and two-dimensional grids we prove upper and lower bounds in the order of $\mathcal{O}(\log n)$ and $\Omega(\log n/\log\log n)$ for $\alpha=2$ and $\Theta(n{2/\alpha-1})$ for $\alpha<2$ respectively. If nodes are distributed uniformly at random on the interval $[0,1]$, a \emph{regular} coloring of $\mathcal{O}(\log n)$ colors guarantees connectivity, while $\Omega(\log \log n)$ colors are required for any coloring.

Citations (44)

Summary

We haven't generated a summary for this paper yet.