Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Quantum and Classical Complexity of Translationally Invariant Tiling and Hamiltonian Problems (0905.2419v2)

Published 14 May 2009 in quant-ph and cs.CC

Abstract: We study the complexity of a class of problems involving satisfying constraints which remain the same under translations in one or more spatial directions. In this paper, we show hardness of a classical tiling problem on an N x N 2-dimensional grid and a quantum problem involving finding the ground state energy of a 1-dimensional quantum system of N particles. In both cases, the only input is N, provided in binary. We show that the classical problem is NEXP-complete and the quantum problem is QMA_EXP-complete. Thus, an algorithm for these problems which runs in time polynomial in N (exponential in the input size) would imply that EXP = NEXP or BQEXP = QMA_EXP, respectively. Although tiling in general is already known to be NEXP-complete, to our knowledge, all previous reductions require that either the set of tiles and their constraints or some varying boundary conditions be given as part of the input. In the problem considered here, these are fixed, constant-sized parameters of the problem. Instead, the problem instance is encoded solely in the size of the system.

Citations (108)

Summary

We haven't generated a summary for this paper yet.