Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expressiveness and Closure Properties for Quantitative Languages (0905.2195v1)

Published 13 May 2009 in cs.LO

Abstract: Weighted automata are nondeterministic automata with numerical weights on transitions. They can define quantitative languages $L$ that assign to each word $w$ a real number $L(w)$. In the case of infinite words, the value of a run is naturally computed as the maximum, limsup, liminf, limit average, or discounted sum of the transition weights. We study expressiveness and closure questions about these quantitative languages. We first show that the set of words with value greater than a threshold can be non-$\omega$-regular for deterministic limit-average and discounted-sum automata, while this set is always $\omega$-regular when the threshold is isolated (i.e., some neighborhood around the threshold contains no word). In the latter case, we prove that the $\omega$-regular language is robust against small perturbations of the transition weights. We next consider automata with transition weights 0 or 1 and show that they are as expressive as general weighted automata in the limit-average case, but not in the discounted-sum case. Third, for quantitative languages $L_1$ and $L_2$, we consider the operations $\max(L_1,L_2)$, $\min(L_1,L_2)$, and $1-L_1$, which generalize the boolean operations on languages, as well as the sum $L_1 + L_2$. We establish the closure properties of all classes of quantitative languages with respect to these four operations.

Summary

We haven't generated a summary for this paper yet.