Termination of Linear Programs with Nonlinear Constraints (0904.3588v1)
Abstract: Tiwari proved that termination of linear programs (loops with linear loop conditions and updates) over the reals is decidable through Jordan forms and eigenvectors computation. Braverman proved that it is also decidable over the integers. In this paper, we consider the termination of loops with polynomial loop conditions and linear updates over the reals and integers. First, we prove that the termination of such loops over the integers is undecidable. Second, with an assumption, we provide an complete algorithm to decide the termination of a class of such programs over the reals. Our method is similar to that of Tiwari in spirit but uses different techniques. Finally, we conjecture that the termination of linear programs with polynomial loop conditions over the reals is undecidable in general by %constructing a loop and reducing the problem to another decision problem related to number theory and ergodic theory, which we guess undecidable.