Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Minimal Polynomial over F_q of Linear Recurring Sequence over F_{q^m} (0904.0525v1)

Published 3 Apr 2009 in cs.IT, cs.CR, and math.IT

Abstract: Recently, motivated by the study of vectorized stream cipher systems, the joint linear complexity and joint minimal polynomial of multisequences have been investigated. Let S be a linear recurring sequence over finite field F_{qm} with minimal polynomial h(x) over F_{qm}. Since F_{qm} and F_{q}m are isomorphic vector spaces over the finite field F_q, S is identified with an m-fold multisequence S{(m)} over the finite field F_q. The joint minimal polynomial and joint linear complexity of the m-fold multisequence S{(m)} are the minimal polynomial and linear complexity over F_q of S respectively. In this paper, we study the minimal polynomial and linear complexity over F_q of a linear recurring sequence S over F_{qm} with minimal polynomial h(x) over F_{qm}. If the canonical factorization of h(x) in F_{qm}[x] is known, we determine the minimal polynomial and linear complexity over F_q of the linear recurring sequence S over F_{qm}.

Citations (12)

Summary

We haven't generated a summary for this paper yet.