Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase transitions and random quantum satisfiability (0903.1904v1)

Published 11 Mar 2009 in quant-ph, cond-mat.dis-nn, cond-mat.stat-mech, and cs.CC

Abstract: Alongside the effort underway to build quantum computers, it is important to better understand which classes of problems they will find easy and which others even they will find intractable. We study random ensembles of the QMA$_1$-complete quantum satisfiability (QSAT) problem introduced by Bravyi. QSAT appropriately generalizes the NP-complete classical satisfiability (SAT) problem. We show that, as the density of clauses/projectors is varied, the ensembles exhibit quantum phase transitions between phases that are satisfiable and unsatisfiable. Remarkably, almost all instances of QSAT for any hypergraph exhibit the same dimension of the satisfying manifold. This establishes the QSAT decision problem as equivalent to a, potentially new, graph theoretic problem and that the hardest typical instances are likely to be localized in a bounded range of clause density.

Citations (22)

Summary

We haven't generated a summary for this paper yet.