Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Recovery of Positive Signals with Minimal Expansion (0902.4045v1)

Published 24 Feb 2009 in cs.IT and math.IT

Abstract: We investigate the sparse recovery problem of reconstructing a high-dimensional non-negative sparse vector from lower dimensional linear measurements. While much work has focused on dense measurement matrices, sparse measurement schemes are crucial in applications, such as DNA microarrays and sensor networks, where dense measurements are not practically feasible. One possible construction uses the adjacency matrices of expander graphs, which often leads to recovery algorithms much more efficient than $\ell_1$ minimization. However, to date, constructions based on expanders have required very high expansion coefficients which can potentially make the construction of such graphs difficult and the size of the recoverable sets small. In this paper, we construct sparse measurement matrices for the recovery of non-negative vectors, using perturbations of the adjacency matrix of an expander graph with much smaller expansion coefficient. We present a necessary and sufficient condition for $\ell_1$ optimization to successfully recover the unknown vector and obtain expressions for the recovery threshold. For certain classes of measurement matrices, this necessary and sufficient condition is further equivalent to the existence of a "unique" vector in the constraint set, which opens the door to alternative algorithms to $\ell_1$ minimization. We further show that the minimal expansion we use is necessary for any graph for which sparse recovery is possible and that therefore our construction is tight. We finally present a novel recovery algorithm that exploits expansion and is much faster than $\ell_1$ optimization. Finally, we demonstrate through theoretical bounds, as well as simulation, that our method is robust to noise and approximate sparsity.

Citations (37)

Summary

We haven't generated a summary for this paper yet.