Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Round Communication Lower Bound for Gap Hamming and Some Consequences (0902.2399v2)

Published 13 Feb 2009 in cs.CC, cs.DB, and cs.DS

Abstract: The Gap-Hamming-Distance problem arose in the context of proving space lower bounds for a number of key problems in the data stream model. In this problem, Alice and Bob have to decide whether the Hamming distance between their $n$-bit input strings is large (i.e., at least $n/2 + \sqrt n$) or small (i.e., at most $n/2 - \sqrt n$); they do not care if it is neither large nor small. This $\Theta(\sqrt n)$ gap in the problem specification is crucial for capturing the approximation allowed to a data stream algorithm. Thus far, for randomized communication, an $\Omega(n)$ lower bound on this problem was known only in the one-way setting. We prove an $\Omega(n)$ lower bound for randomized protocols that use any constant number of rounds. As a consequence we conclude, for instance, that $\epsilon$-approximately counting the number of distinct elements in a data stream requires $\Omega(1/\epsilon2)$ space, even with multiple (a constant number of) passes over the input stream. This extends earlier one-pass lower bounds, answering a long-standing open question. We obtain similar results for approximating the frequency moments and for approximating the empirical entropy of a data stream. In the process, we also obtain tight $n - \Theta(\sqrt{n}\log n)$ lower and upper bounds on the one-way deterministic communication complexity of the problem. Finally, we give a simple combinatorial proof of an $\Omega(n)$ lower bound on the one-way randomized communication complexity.

Citations (36)

Summary

We haven't generated a summary for this paper yet.