Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Almost Optimal Rank Bound for Depth-3 Identities (0811.3161v1)

Published 19 Nov 2008 in cs.CC

Abstract: We show that the rank of a depth-3 circuit (over any field) that is simple, minimal and zero is at most k3\log d. The previous best rank bound known was 2{O(k2)}(\log d){k-2} by Dvir and Shpilka (STOC 2005). This almost resolves the rank question first posed by Dvir and Shpilka (as we also provide a simple and minimal identity of rank \Omega(k\log d)). Our rank bound significantly improves (dependence on k exponentially reduced) the best known deterministic black-box identity tests for depth-3 circuits by Karnin and Shpilka (CCC 2008). Our techniques also shed light on the factorization pattern of nonzero depth-3 circuits, most strikingly: the rank of linear factors of a simple, minimal and nonzero depth-3 circuit (over any field) is at most k3\log d. The novel feature of this work is a new notion of maps between sets of linear forms, called "ideal matchings", used to study depth-3 circuits. We prove interesting structural results about depth-3 identities using these techniques. We believe that these can lead to the goal of a deterministic polynomial time identity test for these circuits.

Citations (54)

Summary

We haven't generated a summary for this paper yet.