Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A game-theoretic version of Oakes' example for randomized forecasting (0808.3746v2)

Published 27 Aug 2008 in cs.LG and cs.GT

Abstract: Using the game-theoretic framework for probability, Vovk and Shafer. have shown that it is always possible, using randomization, to make sequential probability forecasts that pass any countable set of well-behaved statistical tests. This result generalizes work by other authors, who consider only tests of calbration. We complement this result with a lower bound. We show that Vovk and Shafer's result is valid only when the forecasts are computed with unrestrictedly increasing degree of accuracy. When some level of discreteness is fixed, we present a game-theoretic generalization of Oakes' example for randomized forecasting that is a test failing any given method of deferministic forecasting; originally, this example was presented for deterministic calibration.

Summary

We haven't generated a summary for this paper yet.