Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Agnostically Learning Juntas from Random Walks (0806.4210v1)

Published 25 Jun 2008 in cs.LG

Abstract: We prove that the class of functions g:{-1,+1}n -> {-1,+1} that only depend on an unknown subset of k<<n variables (so-called k-juntas) is agnostically learnable from a random walk in time polynomial in n, 2^{k^2}, epsilon^{-k}, and log(1/delta). In other words, there is an algorithm with the claimed running time that, given epsilon, delta > 0 and access to a random walk on {-1,+1}n labeled by an arbitrary function f:{-1,+1}n -> {-1,+1}, finds with probability at least 1-delta a k-junta that is (opt(f)+epsilon)-close to f, where opt(f) denotes the distance of a closest k-junta to f.

Citations (6)

Summary

We haven't generated a summary for this paper yet.