Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Computing the Vertex Centroid of a Polyhedron (0806.3456v1)

Published 20 Jun 2008 in cs.CG

Abstract: Let $\mathcal{P}$ be an $\mathcal{H}$-polytope in $\mathbb{R}d$ with vertex set $V$. The vertex centroid is defined as the average of the vertices in $V$. We prove that computing the vertex centroid of an $\mathcal{H}$-polytope is #P-hard. Moreover, we show that even just checking whether the vertex centroid lies in a given halfspace is already #P-hard for $\mathcal{H}$-polytopes. We also consider the problem of approximating the vertex centroid by finding a point within an $\epsilon$ distance from it and prove this problem to be #P-easy by showing that given an oracle for counting the number of vertices of an $\mathcal{H}$-polytope, one can approximate the vertex centroid in polynomial time. We also show that any algorithm approximating the vertex centroid to \emph{any} ``sufficiently'' non-trivial (for example constant) distance, can be used to construct a fully polynomial approximation scheme for approximating the centroid and also an output-sensitive polynomial algorithm for the Vertex Enumeration problem. Finally, we show that for unbounded polyhedra the vertex centroid can not be approximated to a distance of $d{{1/2}-\delta}$ for any fixed constant $\delta>0$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.