Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

A Simple Dynamic Mind-map Framework To Discover Associative Relationships in Transactional Data Streams (0805.1296v1)

Published 9 May 2008 in cs.NE and cs.SC

Abstract: In this paper, we informally introduce dynamic mind-maps that represent a new approach on the basis of a dynamic construction of connectionist structures during the processing of a data stream. This allows the representation and processing of recursively defined structures and avoids the problem of a more traditional, fixed-size architecture with the processing of input structures of unknown size. For a data stream analysis with association discovery, the incremental analysis of data leads to results on demand. Here, we describe a framework that uses symbolic cells to calculate associations based on transactional data streams as it exists in e.g. bibliographic databases. We follow a natural paradigm of applying simple operations on cells yielding on a mind-map structure that adapts over time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.