Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms for Probabilistically-Constrained Models of Risk-Averse Stochastic Optimization with Black-Box Distributions (0805.0389v1)

Published 4 May 2008 in cs.DS, cs.CC, and cs.DM

Abstract: We consider various stochastic models that incorporate the notion of risk-averseness into the standard 2-stage recourse model, and develop novel techniques for solving the algorithmic problems arising in these models. A key notable feature of our work that distinguishes it from work in some other related models, such as the (standard) budget model and the (demand-) robust model, is that we obtain results in the black-box setting, that is, where one is given only sampling access to the underlying distribution. Our first model, which we call the risk-averse budget model, incorporates the notion of risk-averseness via a probabilistic constraint that restricts the probability (according to the underlying distribution) with which the second-stage cost may exceed a given budget B to at most a given input threshold \rho. We also a consider a closely-related model that we call the risk-averse robust model, where we seek to minimize the first-stage cost and the (1-\rho)-quantile of the second-stage cost. We obtain approximation algorithms for a variety of combinatorial optimization problems including the set cover, vertex cover, multicut on trees, min cut, and facility location problems, in the risk-averse budget and robust models with black-box distributions. We obtain near-optimal solutions that preserve the budget approximately and incur a small blow-up of the probability threshold (both of which are unavoidable). To the best of our knowledge, these are the first approximation results for problems involving probabilistic constraints and black-box distributions. A major component of our results is a fully polynomial approximation scheme for solving the LP-relaxation of the risk-averse problem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.