Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Tsallis entropy and the Shannon entropy of a universal probability (0805.0154v1)

Published 1 May 2008 in cs.IT, cs.CC, and math.IT

Abstract: We study the properties of Tsallis entropy and Shannon entropy from the point of view of algorithmic randomness. In algorithmic information theory, there are two equivalent ways to define the program-size complexity K(s) of a given finite binary string s. In the standard way, K(s) is defined as the length of the shortest input string for the universal self-delimiting Turing machine to output s. In the other way, the so-called universal probability m is introduced first, and then K(s) is defined as -log_2 m(s) without reference to the concept of program-size. In this paper, we investigate the properties of the Shannon entropy, the power sum, and the Tsallis entropy of a universal probability by means of the notion of program-size complexity. We determine the convergence or divergence of each of these three quantities, and evaluate its degree of randomness if it converges.

Citations (4)

Summary

We haven't generated a summary for this paper yet.