Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Recovery of Sparse Signals via $\ell_1$ Minimization (0805.0149v1)

Published 1 May 2008 in cs.LG

Abstract: This article considers constrained $\ell_1$ minimization methods for the recovery of high dimensional sparse signals in three settings: noiseless, bounded error and Gaussian noise. A unified and elementary treatment is given in these noise settings for two $\ell_1$ minimization methods: the Dantzig selector and $\ell_1$ minimization with an $\ell_2$ constraint. The results of this paper improve the existing results in the literature by weakening the conditions and tightening the error bounds. The improvement on the conditions shows that signals with larger support can be recovered accurately. This paper also establishes connections between restricted isometry property and the mutual incoherence property. Some results of Candes, Romberg and Tao (2006) and Donoho, Elad, and Temlyakov (2006) are extended.

Citations (155)

Summary

We haven't generated a summary for this paper yet.