Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Lower Bound on the Bayesian MSE Based on the Optimal Bias Function

Published 28 Apr 2008 in cs.IT and math.IT | (0804.4391v2)

Abstract: A lower bound on the minimum mean-squared error (MSE) in a Bayesian estimation problem is proposed in this paper. This bound utilizes a well-known connection to the deterministic estimation setting. Using the prior distribution, the bias function which minimizes the Cramer-Rao bound can be determined, resulting in a lower bound on the Bayesian MSE. The bound is developed for the general case of a vector parameter with an arbitrary probability distribution, and is shown to be asymptotically tight in both the high and low signal-to-noise ratio regimes. A numerical study demonstrates several cases in which the proposed technique is both simpler to compute and tighter than alternative methods.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.