Papers
Topics
Authors
Recent
Search
2000 character limit reached

Linear Time Recognition Algorithms for Topological Invariants in 3D

Published 12 Apr 2008 in cs.CV | (0804.1982v2)

Abstract: In this paper, we design linear time algorithms to recognize and determine topological invariants such as the genus and homology groups in 3D. These properties can be used to identify patterns in 3D image recognition. This has tremendous amount of applications in 3D medical image analysis. Our method is based on cubical images with direct adjacency, also called (6,26)-connectivity images in discrete geometry. According to the fact that there are only six types of local surface points in 3D and a discrete version of the well-known Gauss-Bonnett Theorem in differential geometry, we first determine the genus of a closed 2D-connected component (a closed digital surface). Then, we use Alexander duality to obtain the homology groups of a 3D object in 3D space.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.