Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building counterexamples to generalizations for rational functions of Ritt's decomposition theorem (0804.1687v1)

Published 10 Apr 2008 in math.AC and cs.SC

Abstract: The classical Ritt's Theorems state several properties of univariate polynomial decomposition. In this paper we present new counterexamples to Ritt's first theorem, which states the equality of length of decomposition chains of a polynomial, in the case of rational functions. Namely, we provide an explicit example of a rational function with coefficients in Q and two decompositions of different length. Another aspect is the use of some techniques that could allow for other counterexamples, namely, relating groups and decompositions and using the fact that the alternating group A_4 has two subgroup chains of different lengths; and we provide more information about the generalizations of another property of polynomial decomposition: the stability of the base field. We also present an algorithm for computing the fixing group of a rational function providing the complexity over Q.

Citations (21)

Summary

We haven't generated a summary for this paper yet.