Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Topology of the Restricted Delaunay Triangulation and Witness Complex in Higher Dimensions

Published 9 Mar 2008 in cs.CG | (0803.1296v1)

Abstract: It is a well-known fact that, under mild sampling conditions, the restricted Delaunay triangulation provides good topological approximations of 1- and 2-manifolds. We show that this is not the case for higher-dimensional manifolds, even under stronger sampling conditions. Specifically, it is not true that, for any compact closed submanifold M of Rn, and any sufficiently dense uniform sampling L of M, the Delaunay triangulation of L restricted to M is homeomorphic to M, or even homotopy equivalent to it. Besides, it is not true either that, for any sufficiently dense set W of witnesses, the witness complex of L relative to M contains or is contained in the restricted Delaunay triangulation of L.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.