Papers
Topics
Authors
Recent
Search
2000 character limit reached

Effective symbolic dynamics, random points, statistical behavior, complexity and entropy

Published 31 Dec 2007 in math.DS, cs.IT, math.IT, and math.PR | (0801.0209v2)

Abstract: We consider the dynamical behavior of Martin-L\"of random points in dynamical systems over metric spaces with a computable dynamics and a computable invariant measure. We use computable partitions to define a sort of effective symbolic model for the dynamics. Through this construction we prove that such points have typical statistical behavior (the behavior which is typical in the Birkhoff ergodic theorem) and are recurrent. We introduce and compare some notions of complexity for orbits in dynamical systems and prove: (i) that the complexity of the orbits of random points equals the Kolmogorov-Sina\"i entropy of the system, (ii) that the supremum of the complexity of orbits equals the topological entropy.

Citations (55)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.