Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Class of Quantum LDPC Codes Constructed From Finite Geometries (0712.4115v3)

Published 26 Dec 2007 in quant-ph, cs.IT, and math.IT

Abstract: Low-density parity check (LDPC) codes are a significant class of classical codes with many applications. Several good LDPC codes have been constructed using random, algebraic, and finite geometries approaches, with containing cycles of length at least six in their Tanner graphs. However, it is impossible to design a self-orthogonal parity check matrix of an LDPC code without introducing cycles of length four. In this paper, a new class of quantum LDPC codes based on lines and points of finite geometries is constructed. The parity check matrices of these codes are adapted to be self-orthogonal with containing only one cycle of length four. Also, the column and row weights, and bounds on the minimum distance of these codes are given. As a consequence, the encoding and decoding algorithms of these codes as well as their performance over various quantum depolarizing channels will be investigated.

Citations (50)

Summary

We haven't generated a summary for this paper yet.