Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization of Information Rate Upper and Lower Bounds for Channels with Memory (0711.4406v1)

Published 28 Nov 2007 in cs.IT and math.IT

Abstract: We consider the problem of minimizing upper bounds and maximizing lower bounds on information rates of stationary and ergodic discrete-time channels with memory. The channels we consider can have a finite number of states, such as partial response channels, or they can have an infinite state-space, such as time-varying fading channels. We optimize recently-proposed information rate bounds for such channels, which make use of auxiliary finite-state machine channels (FSMCs). Our main contribution in this paper is to provide iterative expectation-maximization (EM) type algorithms to optimize the parameters of the auxiliary FSMC to tighten these bounds. We provide an explicit, iterative algorithm that improves the upper bound at each iteration. We also provide an effective method for iteratively optimizing the lower bound. To demonstrate the effectiveness of our algorithms, we provide several examples of partial response and fading channels, where the proposed optimization techniques significantly tighten the initial upper and lower bounds. Finally, we compare our results with an improved variation of the \emph{simplex} local optimization algorithm, called \emph{Soblex}. This comparison shows that our proposed algorithms are superior to the Soblex method, both in terms of robustness in finding the tightest bounds and in computational efficiency. Interestingly, from a channel coding/decoding perspective, optimizing the lower bound is related to increasing the achievable mismatched information rate, i.e., the information rate of a communication system where the decoder at the receiver is matched to the auxiliary channel, and not to the original channel.

Citations (42)

Summary

We haven't generated a summary for this paper yet.