Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entity Ranking in Wikipedia (0711.3128v1)

Published 20 Nov 2007 in cs.IR

Abstract: The traditional entity extraction problem lies in the ability of extracting named entities from plain text using natural language processing techniques and intensive training from large document collections. Examples of named entities include organisations, people, locations, or dates. There are many research activities involving named entities; we are interested in entity ranking in the field of information retrieval. In this paper, we describe our approach to identifying and ranking entities from the INEX Wikipedia document collection. Wikipedia offers a number of interesting features for entity identification and ranking that we first introduce. We then describe the principles and the architecture of our entity ranking system, and introduce our methodology for evaluation. Our preliminary results show that the use of categories and the link structure of Wikipedia, together with entity examples, can significantly improve retrieval effectiveness.

Citations (63)

Summary

We haven't generated a summary for this paper yet.