Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clique Minors in Cartesian Products of Graphs (0711.1189v4)

Published 8 Nov 2007 in math.CO and cs.DM

Abstract: A "clique minor" in a graph G can be thought of as a set of connected subgraphs in G that are pairwise disjoint and pairwise adjacent. The "Hadwiger number" h(G) is the maximum cardinality of a clique minor in G. This paper studies clique minors in the Cartesian product G*H. Our main result is a rough structural characterisation theorem for Cartesian products with bounded Hadwiger number. It implies that if the product of two sufficiently large graphs has bounded Hadwiger number then it is one of the following graphs: - a planar grid with a vortex of bounded width in the outerface, - a cylindrical grid with a vortex of bounded width in each of the two `big' faces, or - a toroidal grid. Motivation for studying the Hadwiger number of a graph includes Hadwiger's Conjecture, which states that the chromatic number chi(G) <= h(G). It is open whether Hadwiger's Conjecture holds for every Cartesian product. We prove that if |V(H)|-1 >= chi(G) >= chi(H) then Hadwiger's Conjecture holds for G*H. On the other hand, we prove that Hadwiger's Conjecture holds for all Cartesian products if and only if it holds for all G * K_2. We then show that h(G * K_2) is tied to the treewidth of G. We also develop connections with pseudoachromatic colourings and connected dominating sets that imply near-tight bounds on the Hadwiger number of grid graphs (Cartesian products of paths) and Hamming graphs (Cartesian products of cliques).

Citations (19)

Summary

We haven't generated a summary for this paper yet.