A characterization of fine words over a finite alphabet (0708.4406v1)
Abstract: To any infinite word w over a finite alphabet A we can associate two infinite words min(w) and max(w) such that any prefix of min(w) (resp. max(w)) is the lexicographically smallest (resp. greatest) amongst the factors of w of the same length. We say that an infinite word w over A is "fine" if there exists an infinite word u such that, for any lexicographic order, min(w) = au where a = min(A). In this paper, we characterize fine words; specifically, we prove that an infinite word w is fine if and only if w is either a "strict episturmian word" or a strict "skew episturmian word''. This characterization generalizes a recent result of G. Pirillo, who proved that a fine word over a 2-letter alphabet is either an (aperiodic) Sturmian word, or an ultimately periodic (but not periodic) infinite word, all of whose factors are (finite) Sturmian.