Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct Optimization of Ranking Measures (0704.3359v1)

Published 25 Apr 2007 in cs.IR and cs.AI

Abstract: Web page ranking and collaborative filtering require the optimization of sophisticated performance measures. Current Support Vector approaches are unable to optimize them directly and focus on pairwise comparisons instead. We present a new approach which allows direct optimization of the relevant loss functions. This is achieved via structured estimation in Hilbert spaces. It is most related to Max-Margin-Markov networks optimization of multivariate performance measures. Key to our approach is that during training the ranking problem can be viewed as a linear assignment problem, which can be solved by the Hungarian Marriage algorithm. At test time, a sort operation is sufficient, as our algorithm assigns a relevance score to every (document, query) pair. Experiments show that the our algorithm is fast and that it works very well.

Citations (115)

Summary

We haven't generated a summary for this paper yet.