Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
113 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing (2507.13812v1)

Published 18 Jul 2025 in cs.CV

Abstract: The multi-modal remote sensing foundation model (MM-RSFM) has significantly advanced various Earth observation tasks, such as urban planning, environmental monitoring, and natural disaster management. However, most existing approaches generally require the training of separate backbone networks for each data modality, leading to redundancy and inefficient parameter utilization. Moreover, prevalent pre-training methods typically apply self-supervised learning (SSL) techniques from natural images without adequately accommodating the characteristics of remote sensing (RS) images, such as the complicated semantic distribution within a single RS image. In this work, we present SkySense V2, a unified MM-RSFM that employs a single transformer backbone to handle multiple modalities. This backbone is pre-trained with a novel SSL strategy tailored to the distinct traits of RS data. In particular, SkySense V2 incorporates an innovative adaptive patch merging module and learnable modality prompt tokens to address challenges related to varying resolutions and limited feature diversity across modalities. In additional, we incorporate the mixture of experts (MoE) module to further enhance the performance of the foundation model. SkySense V2 demonstrates impressive generalization abilities through an extensive evaluation involving 16 datasets over 7 tasks, outperforming SkySense by an average of 1.8 points.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com