Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Bayesian Modeling and Estimation of Linear Time-Variant Systems using Neural Networks and Gaussian Processes (2507.12878v1)

Published 17 Jul 2025 in stat.ML and cs.LG

Abstract: The identification of Linear Time-Variant (LTV) systems from input-output data is a fundamental yet challenging ill-posed inverse problem. This work introduces a unified Bayesian framework that models the system's impulse response, $h(t, \tau)$, as a stochastic process. We decompose the response into a posterior mean and a random fluctuation term, a formulation that provides a principled approach for quantifying uncertainty and naturally defines a new, useful system class we term Linear Time-Invariant in Expectation (LTIE). To perform inference, we leverage modern machine learning techniques, including Bayesian neural networks and Gaussian Processes, using scalable variational inference. We demonstrate through a series of experiments that our framework can robustly infer the properties of an LTI system from a single noisy observation, show superior data efficiency compared to classical methods in a simulated ambient noise tomography problem, and successfully track a continuously varying LTV impulse response by using a structured Gaussian Process prior. This work provides a flexible and robust methodology for uncertainty-aware system identification in dynamic environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com