Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Enhancing Retrieval Augmented Generation with Hierarchical Text Segmentation Chunking (2507.09935v1)

Published 14 Jul 2025 in cs.CL and cs.AI

Abstract: Retrieval-Augmented Generation (RAG) systems commonly use chunking strategies for retrieval, which enhance LLMs by enabling them to access external knowledge, ensuring that the retrieved information is up-to-date and domain-specific. However, traditional methods often fail to create chunks that capture sufficient semantic meaning, as they do not account for the underlying textual structure. This paper proposes a novel framework that enhances RAG by integrating hierarchical text segmentation and clustering to generate more meaningful and semantically coherent chunks. During inference, the framework retrieves information by leveraging both segment-level and cluster-level vector representations, thereby increasing the likelihood of retrieving more precise and contextually relevant information. Evaluations on the NarrativeQA, QuALITY, and QASPER datasets indicate that the proposed method achieved improved results compared to traditional chunking techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com