Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 TPS
Gemini 2.5 Pro 54 TPS Pro
GPT-5 Medium 23 TPS
GPT-5 High 33 TPS Pro
GPT-4o 99 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 213 TPS Pro
2000 character limit reached

WebSynthesis: World-Model-Guided MCTS for Efficient WebUI-Trajectory Synthesis (2507.04370v1)

Published 6 Jul 2025 in cs.AI

Abstract: Recent advancements in LLMs have significantly improved the capabilities of web agents. However, effectively navigating complex and dynamic web environments still requires more advanced trajectory-level planning and execution. Prior studies have addressed self-improving agents by collecting extensive GUI trajectories from real-environment interactions. Despite their effectiveness, these approaches encounter two critical challenges: (1) Uncontrollable environment states, where real or sandboxed web environments often yield unstable and non-deterministic feedback, complicating the reproduction and debugging of agent behaviors; and (2) High API costs, as generating even a single interaction trajectory can involve hundreds of queries, leading to considerable API usage and computational expenses. To address these limitations and enable scalable self-improvement for agents, we propose WebSynthesis, a novel framework for trajectory synthesis and training. WebSynthesis leverages a learned world model to simulate virtual web environments, allowing a policy agent to perform efficient and reversible tree-based planning. This approach supports the large-scale generation of diverse and high-quality trajectories, which are subsequently utilized to refine the agent's policy. Experimental results demonstrate that an agent trained using WebSynthesis on a small-scale synthetic dataset achieves performance comparable to or even surpassing that of models trained on large-scale real-world data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube