Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Hölder Regularity for Quasilinear Elliptic Equations with Mixed Local-Nonlocal Operators, Variable Exponents, and Weights (2507.01899v1)

Published 2 Jul 2025 in math.AP

Abstract: We establish local boundedness and local H\"older continuity of weak solutions to the following prototype problem: $$ -\operatorname{div}\left(|x|{-2 \beta}|\nabla u|{\mathbf{q}-2} \nabla u\right)+(-\Delta){p(\cdot, \cdot), \beta}{s(\cdot, \cdot)} u=0 \quad \text { in } \quad \Omega, $$ where $\Omega \subset \mathbb{R}n, n \geq 2$, is a bounded domain. The nonlocal operator is defined by $$ (-\Delta){p(\cdot, \cdot), \beta}{s(\cdot, \cdot)} u(x):=\mathrm{P} . \mathrm{V} . \int_{\Omega} \frac{|u(x)-u(y)|{p(x, y)-2}(u(x)-u(y))}{|x-y|{n+s(x, y) p(x, y)}} \frac{1}{|x|\beta|y|\beta} \mathrm{d} y $$ Here, $p: \Omega \times \Omega \rightarrow(1, \infty)$ and $s: \Omega \times \Omega \rightarrow(0,1)$ are measurable functions, $\mathbf{q}:=\operatorname{ess}_{\Omega \times \Omega} p$, and $0 \leq \beta<n$. Our approach is analytic and relies on an adaptation of the De Giorgi-Nash-Moser theory to a mixed local-nonlocal framework with variable exponents and weights.

Summary

We haven't generated a summary for this paper yet.