Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pricing Fractal Derivatives under Sub-Mixed Fractional Brownian Motion with Jumps (2506.24111v1)

Published 30 Jun 2025 in q-fin.PR

Abstract: We study the pricing of derivative securities in financial markets modeled by a sub-mixed fractional Brownian motion with jumps (smfBm-J), a non-Markovian process that captures both long-range dependence and jump discontinuities. Under this model, we derive a fractional integro-partial differential equation (PIDE) governing the option price dynamics. Using semigroup theory, we establish the existence and uniqueness of mild solutions to this PIDE. For European options, we obtain a closed-form pricing formula via Mellin-Laplace transform techniques. Furthermore, we propose a Grunwald-Letnikov finite-difference scheme for solving the PIDE numerically and provide a stability and convergence analysis. Empirical experiments demonstrate the accuracy and flexibility of the model in capturing market phenomena such as memory and heavy-tailed jumps, particularly for barrier options. These results underline the potential of fractional-jump models in financial engineering and derivative pricing.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com