Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning for Optical Misalignment Diagnostics in Multi-Lens Imaging Systems (2506.23173v1)

Published 29 Jun 2025 in physics.optics, cs.AI, and cs.LG

Abstract: In the rapidly evolving field of optical engineering, precise alignment of multi-lens imaging systems is critical yet challenging, as even minor misalignments can significantly degrade performance. Traditional alignment methods rely on specialized equipment and are time-consuming processes, highlighting the need for automated and scalable solutions. We present two complementary deep learning-based inverse-design methods for diagnosing misalignments in multi-element lens systems using only optical measurements. First, we use ray-traced spot diagrams to predict five-degree-of-freedom (5-DOF) errors in a 6-lens photographic prime, achieving a mean absolute error of 0.031mm in lateral translation and 0.011$\circ$ in tilt. We also introduce a physics-based simulation pipeline that utilizes grayscale synthetic camera images, enabling a deep learning model to estimate 4-DOF, decenter and tilt errors in both two- and six-lens multi-lens systems. These results show the potential to reshape manufacturing and quality control in precision imaging.

Summary

We haven't generated a summary for this paper yet.