Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DIGS: Dynamic CBCT Reconstruction using Deformation-Informed 4D Gaussian Splatting and a Low-Rank Free-Form Deformation Model (2506.22280v1)

Published 27 Jun 2025 in eess.IV and cs.CV

Abstract: 3D Cone-Beam CT (CBCT) is widely used in radiotherapy but suffers from motion artifacts due to breathing. A common clinical approach mitigates this by sorting projections into respiratory phases and reconstructing images per phase, but this does not account for breathing variability. Dynamic CBCT instead reconstructs images at each projection, capturing continuous motion without phase sorting. Recent advancements in 4D Gaussian Splatting (4DGS) offer powerful tools for modeling dynamic scenes, yet their application to dynamic CBCT remains underexplored. Existing 4DGS methods, such as HexPlane, use implicit motion representations, which are computationally expensive. While explicit low-rank motion models have been proposed, they lack spatial regularization, leading to inconsistencies in Gaussian motion. To address these limitations, we introduce a free-form deformation (FFD)-based spatial basis function and a deformation-informed framework that enforces consistency by coupling the temporal evolution of Gaussian's mean position, scale, and rotation under a unified deformation field. We evaluate our approach on six CBCT datasets, demonstrating superior image quality with a 6x speedup over HexPlane. These results highlight the potential of deformation-informed 4DGS for efficient, motion-compensated CBCT reconstruction. The code is available at https://github.com/Yuliang-Huang/DIGS.

Summary

We haven't generated a summary for this paper yet.