Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Average Causal Effects with Incomplete Exposure and Confounders (2506.21786v1)

Published 26 Jun 2025 in stat.ME

Abstract: Standard methods for estimating average causal effects require complete observations of the exposure and confounders. In observational studies, however, missing data are ubiquitous. Motivated by a study on the effect of prescription opioids on mortality, we propose methods for estimating average causal effects when exposures and potential confounders may be missing. We consider missingness at random and additionally propose several specific missing not at random (MNAR) assumptions. Under our proposed MNAR assumptions, we show that the average causal effects are identified from the observed data and derive corresponding influence functions in a nonparametric model, which form the basis of our proposed estimators. Our simulations show that standard multiple imputation techniques paired with a complete data estimator is unbiased when data are missing at random (MAR) but can be biased otherwise. For each of the MNAR assumptions, we instead propose doubly robust targeted maximum likelihood estimators (TMLE), allowing misspecification of either (i) the outcome models or (ii) the exposure and missingness models. The proposed methods are suitable for any outcome types, and we apply them to a motivating study that examines the effect of prescription opioid usage on all-cause mortality using data from the National Health and Nutrition Examination Survey (NHANES).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com