Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Necessity of Output Distribution Reweighting for Effective Class Unlearning (2506.20893v1)

Published 25 Jun 2025 in cs.LG and cs.AI

Abstract: In this work, we introduce an output-reweighting unlearning method, RWFT, a lightweight technique that erases an entire class from a trained classifier without full retraining. Forgetting specific classes from trained models is essential for enforcing user deletion rights and mitigating harmful or biased predictions. The full retraining is costly and existing unlearning methods fail to replicate the behavior of the retrained models when predicting samples from the unlearned class. We prove this failure by designing a variant of membership inference attacks, MIA-NN that successfully reveals the unlearned class for any of these methods. We propose a simple redistribution of the probability mass for the prediction on the samples in the forgotten class which is robust to MIA-NN. We also introduce a new metric based on the total variation (TV) distance of the prediction probabilities to quantify residual leakage to prevent future methods from susceptibility to the new attack. Through extensive experiments with state of the art baselines in machine unlearning, we show that our approach matches the results of full retraining in both metrics used for evaluation by prior work and the new metric we propose in this work. Compare to state-of-the-art methods, we gain 2.79% in previously used metrics and 111.45% in our new TV-based metric over the best existing method.

Summary

We haven't generated a summary for this paper yet.