Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single-Index Quantile Factor Model with Observed Characteristics (2506.19586v1)

Published 24 Jun 2025 in econ.EM

Abstract: We propose a characteristics-augmented quantile factor (QCF) model, where unknown factor loading functions are linked to a large set of observed individual-level (e.g., bond- or stock-specific) covariates via a single-index projection. The single-index specification offers a parsimonious, interpretable, and statistically efficient way to nonparametrically characterize the time-varying loadings, while avoiding the curse of dimensionality in flexible nonparametric models. Using a three-step sieve estimation procedure, the QCF model demonstrates high in-sample and out-of-sample accuracy in simulations. We establish asymptotic properties for estimators of the latent factor, loading functions, and index parameters. In an empirical study, we analyze the dynamic distributional structure of U.S. corporate bond returns from 2003 to 2020. Our method outperforms the benchmark quantile Fama-French five-factor model and quantile latent factor model, particularly in the tails ($\tau=0.05, 0.95$). The model reveals state-dependent risk exposures driven by characteristics such as bond and equity volatility, coupon, and spread. Finally, we provide economic interpretations of the latent factors.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com