Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry-aware Distance Measure for Diverse Hierarchical Structures in Hyperbolic Spaces (2506.18533v1)

Published 23 Jun 2025 in cs.CV

Abstract: Learning in hyperbolic spaces has attracted increasing attention due to its superior ability to model hierarchical structures of data. Most existing hyperbolic learning methods use fixed distance measures for all data, assuming a uniform hierarchy across all data points. However, real-world hierarchical structures exhibit significant diversity, making this assumption overly restrictive. In this paper, we propose a geometry-aware distance measure in hyperbolic spaces, which dynamically adapts to varying hierarchical structures. Our approach derives the distance measure by generating tailored projections and curvatures for each pair of data points, effectively mapping them to an appropriate hyperbolic space. We introduce a revised low-rank decomposition scheme and a hard-pair mining mechanism to mitigate the computational cost of pair-wise distance computation without compromising accuracy. We present an upper bound on the low-rank approximation error using Talagrand's concentration inequality, ensuring theoretical robustness. Extensive experiments on standard image classification (MNIST, CIFAR-10 and CIFAR-100), hierarchical classification (5-level CIFAR-100), and few-shot learning tasks (mini-ImageNet, tiered-ImageNet) demonstrate the effectiveness of our method. Our approach consistently outperforms learning methods that use fixed distance measures, with notable improvements on few-shot learning tasks, where it achieves over 5\% gains on mini-ImageNet. The results reveal that adaptive distance measures better capture diverse hierarchical structures, with visualization showing clearer class boundaries and improved prototype separation in hyperbolic spaces.

Summary

We haven't generated a summary for this paper yet.