Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifiable Convex-Concave Regression via Sub-gradient Regularised Least Squares (2506.18078v1)

Published 22 Jun 2025 in stat.ML, cs.LG, math.ST, stat.AP, and stat.TH

Abstract: We propose a novel nonparametric regression method that models complex input-output relationships as the sum of convex and concave components. The method-Identifiable Convex-Concave Nonparametric Least Squares (ICCNLS)-decomposes the target function into additive shape-constrained components, each represented via sub-gradient-constrained affine functions. To address the affine ambiguity inherent in convex-concave decompositions, we introduce global statistical orthogonality constraints, ensuring that residuals are uncorrelated with both intercept and input variables. This enforces decomposition identifiability and improves interpretability. We further incorporate L1, L2 and elastic net regularisation on sub-gradients to enhance generalisation and promote structural sparsity. The proposed method is evaluated on synthetic and real-world datasets, including healthcare pricing data, and demonstrates improved predictive accuracy and model simplicity compared to conventional CNLS and difference-of-convex (DC) regression approaches. Our results show that statistical identifiability, when paired with convex-concave structure and sub-gradient regularisation, yields interpretable models suited for forecasting, benchmarking, and policy evaluation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets