Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring and Augmenting Large Language Models for Solving Capture-the-Flag Challenges (2506.17644v1)

Published 21 Jun 2025 in cs.AI

Abstract: Capture-the-Flag (CTF) competitions are crucial for cybersecurity education and training. As LLMs evolve, there is increasing interest in their ability to automate CTF challenge solving. For example, DARPA has organized the AIxCC competition since 2023 to advance AI-powered automated offense and defense. However, this demands a combination of multiple abilities, from knowledge to reasoning and further to actions. In this paper, we highlight the importance of technical knowledge in solving CTF problems and deliberately construct a focused benchmark, CTFKnow, with 3,992 questions to measure LLMs' performance in this core aspect. Our study offers a focused and innovative measurement of LLMs' capability in understanding CTF knowledge and applying it to solve CTF challenges. Our key findings reveal that while LLMs possess substantial technical knowledge, they falter in accurately applying this knowledge to specific scenarios and adapting their strategies based on feedback from the CTF environment. Based on insights derived from this measurement study, we propose CTFAgent, a novel LLM-driven framework for advancing CTF problem-solving. CTFAgent introduces two new modules: two-stage Retrieval Augmented Generation (RAG) and interactive Environmental Augmentation, which enhance LLMs' technical knowledge and vulnerability exploitation on CTF, respectively. Our experimental results show that, on two popular CTF datasets, CTFAgent both achieves over 80% performance improvement. Moreover, in the recent picoCTF2024 hosted by CMU, CTFAgent ranked in the top 23.6% of nearly 7,000 participating teams. This reflects the benefit of our measurement study and the potential of our framework in advancing LLMs' capabilities in CTF problem-solving.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zimo Ji (2 papers)
  2. Daoyuan Wu (39 papers)
  3. Wenyuan Jiang (3 papers)
  4. Pingchuan Ma (90 papers)
  5. Zongjie Li (29 papers)
  6. Shuai Wang (466 papers)
Youtube Logo Streamline Icon: https://streamlinehq.com