Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CLOUD: A Scalable and Physics-Informed Foundation Model for Crystal Representation Learning (2506.17345v1)

Published 19 Jun 2025 in cond-mat.mtrl-sci and cs.LG

Abstract: The prediction of crystal properties is essential for understanding structure-property relationships and accelerating the discovery of functional materials. However, conventional approaches relying on experimental measurements or density functional theory (DFT) calculations are often resource-intensive, limiting their scalability. Machine learning (ML) models offer a promising alternative by learning complex structure-property relationships from data, enabling faster predictions. Yet, existing ML models often rely on labeled data, adopt representations that poorly capture essential structural characteristics, and lack integration with physical principles--factors that limit their generalizability and interpretability. Here, we introduce CLOUD (Crystal LLM for Unified and Differentiable materials modeling), a transformer-based framework trained on a novel Symmetry-Consistent Ordered Parameter Encoding (SCOPE) that encodes crystal symmetry, Wyckoff positions, and composition in a compact, coordinate-free string representation. Pre-trained on over six million crystal structures, CLOUD is fine-tuned on multiple downstream tasks and achieves competitive performance in predicting a wide range of material properties, demonstrating strong scaling performance. Furthermore, as proof of concept of differentiable materials modeling, CLOUD is applied to predict the phonon internal energy and heat capacity, which integrates the Debye model to preserve thermodynamic consistency. The CLOUD-DEBYE framework enforces thermodynamic consistency and enables temperature-dependent property prediction without requiring additional data. These results demonstrate the potential of CLOUD as a scalable and physics-informed foundation model for crystalline materials, unifying symmetry-consistent representations with physically grounded learning for property prediction and materials discovery.

Summary

We haven't generated a summary for this paper yet.