Can Common VLMs Rival Medical VLMs? Evaluation and Strategic Insights (2506.17337v1)
Abstract: Medical vision-LLMs (VLMs) leverage large-scale pretraining for diverse imaging tasks but require substantial computational and data resources. Meanwhile, common or general-purpose VLMs (e.g., CLIP, LLaVA), though not trained for medical use, show promise with fine-tuning. This raises a key question: Can efficient fine-tuned common VLMs rival generalist medical VLMs for solving specific medical imaging tasks? This study systematically evaluates common and medical VLMs across disease diagnosis and visual question answering (VQA). Using CLIP-based and LLaVA-based models, we examine (1) off-the-shelf performance gaps in in-domain (ID) settings, (2) whether fine-tuning bridges these gaps, and (3) generalization to out-of-domain (OOD) tasks on unseen medical modalities. While medical-specific pretraining provides advantages in ID settings, common VLMs match or surpass medical-specific models after lightweight fine-tuning, with LoRA-based adaptation proving highly effective among different tasks. In OOD tasks, common VLMs demonstrate strong adaptability in some tasks, challenging the assumption that medical-specific pre-training is essential. These findings suggest that leveraging common VLMs with fine-tuning offers a scalable and cost-effective alternative to developing large-scale medical VLMs, providing crucial insights for future research in the medical imaging field.
- Yuan Zhong (70 papers)
- Ruinan Jin (19 papers)
- Xiaoxiao Li (144 papers)
- Qi Dou (163 papers)