Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularized Targeted Maximum Likelihood Estimation in Highly Adaptive Lasso Implied Working Models (2506.17214v1)

Published 20 Jun 2025 in stat.ME

Abstract: We address the challenge of performing Targeted Maximum Likelihood Estimation (TMLE) after an initial Highly Adaptive Lasso (HAL) fit. Existing approaches that utilize the data-adaptive working model selected by HAL-such as the relaxed HAL update-can be simple and versatile but may become computationally unstable when the HAL basis expansions introduce collinearity. Undersmoothed HAL may fail to solve the efficient influence curve (EIC) at the desired level without overfitting, particularly in complex settings like survival-curve estimation. A full HAL-TMLE, which treats HAL as the initial estimator and then targets in the nonparametric or semiparametric model, typically demands costly iterative clever-covariate calculations in complex set-ups like survival analysis and longitudinal mediation analysis. To overcome these limitations, we propose two new HAL-TMLEs that operate within the finite-dimensional working model implied by HAL: Delta-method regHAL-TMLE and Projection-based regHAL-TMLE. We conduct extensive simulations to demonstrate the performance of our proposed methods.

Summary

We haven't generated a summary for this paper yet.