Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
101 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
28 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
220 tokens/sec
2000 character limit reached

SIDE: Semantic ID Embedding for effective learning from sequences (2506.16698v1)

Published 20 Jun 2025 in cs.LG

Abstract: Sequence-based recommendations models are driving the state-of-the-art for industrial ad-recommendation systems. Such systems typically deal with user histories or sequence lengths ranging in the order of O(103) to O(104) events. While adding embeddings at this scale is manageable in pre-trained models, incorporating them into real-time prediction models is challenging due to both storage and inference costs. To address this scaling challenge, we propose a novel approach that leverages vector quantization (VQ) to inject a compact Semantic ID (SID) as input to the recommendation models instead of a collection of embeddings. Our method builds on recent works of SIDs by introducing three key innovations: (i) a multi-task VQ-VAE framework, called VQ fusion that fuses multiple content embeddings and categorical predictions into a single Semantic ID; (ii) a parameter-free, highly granular SID-to-embedding conversion technique, called SIDE, that is validated with two content embedding collections, thereby eliminating the need for a large parameterized lookup table; and (iii) a novel quantization method called Discrete-PCA (DPCA) which generalizes and enhances residual quantization techniques. The proposed enhancements when applied to a large-scale industrial ads-recommendation system achieves 2.4X improvement in normalized entropy (NE) gain and 3X reduction in data footprint compared to traditional SID methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube