Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One Period to Rule Them All: Identifying Critical Learning Periods in Deep Networks (2506.15954v1)

Published 19 Jun 2025 in cs.LG

Abstract: Critical Learning Periods comprehend an important phenomenon involving deep learning, where early epochs play a decisive role in the success of many training recipes, such as data augmentation. Existing works confirm the existence of this phenomenon and provide useful insights. However, the literature lacks efforts to precisely identify when critical periods occur. In this work, we fill this gap by introducing a systematic approach for identifying critical periods during the training of deep neural networks, focusing on eliminating computationally intensive regularization techniques and effectively applying mechanisms for reducing computational costs, such as data pruning. Our method leverages generalization prediction mechanisms to pinpoint critical phases where training recipes yield maximum benefits to the predictive ability of models. By halting resource-intensive recipes beyond these periods, we significantly accelerate the learning phase and achieve reductions in training time, energy consumption, and CO$_2$ emissions. Experiments on standard architectures and benchmarks confirm the effectiveness of our method. Specifically, we achieve significant milestones by reducing the training time of popular architectures by up to 59.67%, leading to a 59.47% decrease in CO$_2$ emissions and a 60% reduction in financial costs, without compromising performance. Our work enhances understanding of training dynamics and paves the way for more sustainable and efficient deep learning practices, particularly in resource-constrained environments. In the era of the race for foundation models, we believe our method emerges as a valuable framework. The repository is available at https://github.com/baunilhamarga/critical-periods

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com