Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Passing the Turing Test in Political Discourse: Fine-Tuning LLMs to Mimic Polarized Social Media Comments (2506.14645v1)

Published 17 Jun 2025 in cs.CL and cs.CY

Abstract: The increasing sophistication of LLMs has sparked growing concerns regarding their potential role in exacerbating ideological polarization through the automated generation of persuasive and biased content. This study explores the extent to which fine-tuned LLMs can replicate and amplify polarizing discourse within online environments. Using a curated dataset of politically charged discussions extracted from Reddit, we fine-tune an open-source LLM to produce context-aware and ideologically aligned responses. The model's outputs are evaluated through linguistic analysis, sentiment scoring, and human annotation, with particular attention to credibility and rhetorical alignment with the original discourse. The results indicate that, when trained on partisan data, LLMs are capable of producing highly plausible and provocative comments, often indistinguishable from those written by humans. These findings raise significant ethical questions about the use of AI in political discourse, disinformation, and manipulation campaigns. The paper concludes with a discussion of the broader implications for AI governance, platform regulation, and the development of detection tools to mitigate adversarial fine-tuning risks.

Summary

We haven't generated a summary for this paper yet.